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Abstract

Data-driven design approaches such as Multi-Attribute Tradespace Exploration and Set-Based Design are increasing in popularity
due to their ability to capture broader decision spaces than traditional point-based design. These methods share many of the same
features and have complementary goals. Artificial intelligence offers a way to process the large amounts of data created by these
methods in a fast and objective manner, supporting the insights of subject matter experts. This paper discusses the intersection of
these three research areas and demonstrates an approach for combining these techniques to rapidly identify the most value-driving
decisions available to the design team.

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 17th Annual Conference on Systems Engineering Research (CSER).

Keywords: multi-attribute; tradespace exploration; set-based design; artificial intelligence; acquisition; analytics; clustering

1. Introduction

As computational power has increased over time, system architects and designers have sought to further improve
their analytics capability by collecting/generating and leveraging ever-larger amounts of data. Where “design” was
once a task conducted by siloed domain experts, it is now characterized by increasing collaboration and joint analysis.
The design process remains rooted in the knowledge and expertise of its practitioners, but the rising wealth of data
available for analysis provides a new avenue for the application of artificial intelligence (AI) and the possibility of
capturing emergent insights that may run counter to expectations or prevailing wisdom. Multi-Attribute Tradespace
Exploration (MATE) and Set-Based Design (SBD) are well suited for establishing a foundational source of data that
can be leveraged in this way. This paper provides an introduction to these two analysis frameworks/techniques,
discusses their relationship to one another specifically with their ability to support the same analysis goals, and
demonstrates the application of basic Al to a ground vehicle design problem formulated with MATE in a way that can
augment the definition of “sets” in SBD.
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2. Multi-Attribute Tradespace Exploration

MATE is an analysis framework within the larger tradespace exploration paradigm [1], which emphasizes the
evaluation of many different alternative solutions — including some that are expected to perform poorly — in contrast
to traditional point-based design, which concentrates on a more detailed assessment of handful of viable designs. The
“multi-attribute” component refers to MATE’s emphasis on value modeling: the capturing of stakeholder preferences
on many performance attributes and their aggregation (to the appropriate degree) in order to facilitate smoother
exploration of the tradespace and increase the ease with which “good” choices can be found. Generally, MATE is
applied with multi-attribute utility (MAU) value models, but any value modeling approach can be used, such as the
analytic hierarchy process (AHP) or cost-benefit analysis.

MATE is cast as a three-phase framework, with multiple tradespace-related processes within each. The three
phases are Define, Generate, and Explore. The Define phase is devoted to problem formulation. As a model-centric,
data-driven approach, it is paramount that the scoping and purpose of the application is given due consideration in
order to both ensure that all critical aspects of the decision are modeled and able to be incorporated into the tradespace,
as well as to minimize the potential for wasted effort spent modeling extraneous or superfluous aspects. MATE
encourages that these framing tasks are performed in conjunction with stakeholders, in accordance with the principles
of value focused thinking and value-driven design: making sure that the pertinent questions are answered and the
stakeholders will ultimately be satisfied by the decision. The Generate phase involves the creation of evaluative and
value models that match the problem formulation and are able to calculate the performance/value criteria for all of the
alternatives and scenarios of interest. Finally, the resulting tradespace data is Explored in the last phase, using a
variety of tradespace visualization and analysis techniques.
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Fig 1. Overview of the MATE framework

Following the MATE framework from start to finish results in a large quantity of data on many design alternatives,
allowing analysts to discover patterns in the tradespace that are difficult or impossible to see when viewing only a few
point designs. Patterns and other insights are often obscured when comparing only “good” choices. By learning more
about the underlying relationships between controllable design parameters and resulting system performance, analysts
who use MATE are better able to build intuition for how the individual choices they make affect the system as a
whole. This can lead both to the direct identification of high-value designs as well as an improved ability to creatively
expand the decision space, leveraging the insights and intuition gained from the exploration to propose solutions that
may have been excluded from the initial scope. Importantly, MATE allows the comparison of alternatives that are
vastly different in concept on the same value-oriented dimensions, supporting this spiral of broad decision making
and preventing “lock-in” on a single concept.

3. Set-Based Design

SBD is a design paradigm that, like tradespace exploration, is primarily positioned in contrast to traditional point-
based design [2, 3]. Its particular emphasis is on delaying the selection of a specific design and instead supporting
more abstract analysis on sets of alternatives, making it well-suited for conceptual design by leaving the commitment
to specific design decisions for later detailed design efforts. In order to enable this type of thinking, SBD explicitly
divides the designer-controlled variables/choices into two categories: design set drivers and design set modifiers. This
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conceptual partitioning highlights the decisions that define the platform (drivers) as separate from those that are more
fungible details (modifiers). Sets are defined by fixed drivers, with allowed variation in the modifiers. The
drivers/modifiers framework echoes the more general concepts of architecture (a set with fixed drivers but variable
modifiers) and design (an instance of a set with fixed modifiers). Typically, the identification of design set drivers is
performed by domain experts who possess knowledge of which variables will both drive the most substantial tradeoffs
in the decision space and be the most difficult to change during detailed design.

After defining the drivers and modifiers, a typical SBD process will involve the separate analysis of different
domain teams, each responsible for advocating for their own needs. In a classic point-design study this approach is
risky, as the individual domain teams will usually propose vastly different designs with no clear path to reconciling
those differences. By focusing on the sets, SBD forces the domain teams to leave open a wider range of possibilities,
increasing the likelihood that there is overlap between them. If the sets proposed by the domain teams do not overlap,
the gradual introduction of requirements on the set drivers forces the teams to iteratively adjust their proposed set until
they do (as shown in Fig 2). This gradual reduction in scope also potentially enables an increase in model fidelity as
designers zero-in on a region of interest. The expected output of an SBD conceptual study is the selection of one set
with which to move forward into detailed design. A specific design within that set may be used as a baseline for the
following analysis, but with the understanding that the chosen design set modifiers are subject to further change.
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Fig 2. Set-Based Design process [2]

A key challenge for SBD is how to evaluate and compare the sets. Because sets are by definition a collection of
similar designs with a range of performance, there is not a clear one-to-one assignment of “goodness” to a set which
contains more available tradeoffs within itself (assuming that the level of fidelity in the model is detailed enough to
incorporate the impact of set modifiers in addition to the set drivers). Generally, this will involve taking sample
designs from within the set, evaluating them, and assigning the set some sort of score based on their performance.
The taking of sample designs, when executed in large quantities, draws a very obvious parallel with tradespace
exploration and it should be noted that, as with many popular developing techniques incorporating the work of multiple
authors, the terminology for SBD has some differences between sources that occasionally overlap with similar fields.
For example, Small et al. [4] and Parnell [5] use the phrase “tradespace exploration” in conjunction with SBD, likening
SBD to a tradespace exploration of many alternatives (versus a “tradespace exploration of traditional point-based
designs,” which is using “tradespace exploration” to mean something closer to classic tradeoff analysis than the
tradespace exploration paradigm that inspired MATE).

4. MATE and SBD alignment

MATE and SBD are fundamentally aligned in terms of their objectives, with the same analysis goals and similar
approaches for achieving them. Consider this quote on the desired outcomes of SBD, from Singer et al. [6], emphasis
ours:

First, one would expect to have identified a manageable set of design parameters that have been determined to be
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principal factors in achieving maximum design value. Next, one would expect to have determined which of the set is
more important than the others. One would expect to have identified which design attributes and measures are most
important in differentiating among the most promising design combinations. One would also expect to be able [to]
comparatively evaluate the most promising designs in an analysis framework that capitalizes on the current best
knowledge of design parameters and system attributes to assess total value. One would also expect to be able to examine
the impact of changes in attribute preferences on the best design recommendation.

The bolded items are also common stated objectives in most MATE applications, particularly the attention paid to
stakeholder preferences which is indicative of a value-focused methodology. Because of their similarities, the insight
gathered from MATE and SBD could easily flow in either direction depending on the perspective of a given study:
MATE could be used as a computational/evaluative framework for an SBD study or SBD could be a particular
perspective applied to the analysis of a MATE study, focusing on sets of similar designs rather than individual
alternatives. And the core idea of viewing many alternative designs as members of a smaller number of cohesive
alternative sets has manifested as “bubble” tradespaces in the work of both fields, as in Fig 3 — a take on the classic
scatterplot that emphasizes regions of the tradespace with similar alternatives. For SBD the bubbles correspond to the
sets and for MATE they correspond to shared design variables that are considered important: “drivers” of the
architecture in the same sense that SBD uses to define the sets up front.
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Fig 3. Bubble tradespaces outlining the regions of different sets in both MATE research [7] and SBD research [5]

5. Leveraging artificial intelligence with MATE to augment SBD

The data-driven approaches of both MATE and SBD demand similar required levels of scoping and modeling effort
(an increase over point-design methods) but in turn enable the wealth of insight that is available to analysts who use
them to structure their problems. However, most applications of these techniques have continued to rely heavily on
human expertise to perform the analysis and exploration of the tradespace. In the case of MATE, this has been
implicitly inherited from the expertise and workflows familiar to its practitioners. For SBD, the individual exploration
of domain teams is considered a key part of the process. Though great success has been met with both approaches,
the application of Al to these large datasets has the potential to powerfully supplement human analysis by revealing
unexpected or counterintuitive tradeoffs.

Before proceeding further, it may be helpful to clarify what is meant by artificial intelligence in this context. The
concept of Al — the ability for machines to imitate and/or replicate behaviors of humans — has been an umbrella for a
wide range of mathematical and technical research since at least the 1950s [8]. The boundary of the field has become
blurry as research has progressed over that time, with humans becoming more and more comfortable interacting with
(and relying upon) machines displaying some level of intelligence, which has made for a “moving goalpost” to the
question “what is AI?”. At this time, the colloquial meaning of Al is essentially synonymous with machine learning:
the idea that a machine can teach itself without the direct oversight/programming of its human creator. For the level
of discussion in this paper, we will divide machine learning into three rough areas of research, with the caveat that
this is not an exhaustive list and that many applications must rely on the blending of these techniques:
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. Supervised Learning — The training of a machine with matched pairs of inputs and outputs, with the end
goal of being able to accurately predict outputs from a set of inputs

. Reinforcement Learning — The training of a machine by allowing it to make decisions, assess the
“goodness” of the result, and iteratively refine itself to make decisions that maximize that “goodness”

. Unsupervised Learning — The training of a machine to recognize patterns in otherwise unstructured input

data, typically to help users better understand the data and find explanatory relationships

There is currently considerable research on difficult, modern problems within all of these categories, applying
innovative mathematical techniques such as Bayesian belief networks and neural networks to domains such as image
recognition, game strategy, and fraud detection. These applications generally have massive search spaces,
necessitating the use of high-performance machine learning techniques to exceed human performance [9]. However,
even relatively simple applications of these types of Al tasks have the potential to significantly augment human-alone
performance. Indeed, each of these three categories of machine learning has corresponding “simpler” tasks that can
be tackled with mathematical techniques that most practicing analysts will be familiar with. For example, regression
is a form of supervised learning, one in which we teach a machine to execute the same tasks that a student might
perform when calculating a linear regression with pencil and paper in Algebra II (with some additional complexity to
capture more complex functions). Similarly, the optimization of a black-box model via any algorithm that is allowed
to iteratively sample new “guesses” — particularly heuristic optimization techniques such as genetic algorithms — is a
rudimentary form of reinforcement learning. These basic techniques are used to great effect in many engineering
applications, whether or not they are actively considered to be “Al”. The ability to apply these analysis concepts to a
tradespace-oriented methodology demonstrates the potential for a future in which more advanced mathematical
techniques (e.g. neural networks) can also be adopted, with the potential to both speed up and improve the quality of
the resulting Al insights on these problems.

Particularly relevant to the discussion of MATE and SBD is the application of unsupervised learning to the
definition of the sets. The sets of SBD are defined a priori by the expert-driven categorization of design variables as
drivers or modifiers. The main purpose of this choice in problem formulation is to leverage human expertise to
structure the way in which the full space of alternatives will be trimmed down across iterations of the process. Similar
approaches have been taken in MATE studies, by creating bubble tradespaces for different architectures and discarding
those architectures/bubbles that do not ever approach the Pareto front of the tradespace. One advantage that MATE
has in this regard is that the delineation of the sets can optionally occur ex post facto rather than a priori, allowing the
analyst to determine which design variables are actually drivers by exploring the data rather than relying solely on
expertise. However, the central task of both these approaches — the division of the full tradespace into sets of somehow
similar alternatives — is a clustering task that can fall under the Al purview of unsupervised learning. What if an Al
was able to define these sets better than a human expert? Or, if not better, at least present some compelling insight or
a different way of looking at the problem than originally expected? The following section will present an example of
data-driven clustering to a ground vehicle design problem, allowing for sets to be clustered fully automatically and
have the results presented to the analyst for rapid assessment.

6. Ground vehicle design example

This section will be a simple demonstration of the potential for Al to leverage a MATE dataset to recommend
meaningful definitions of sets that could be used to supplement SME judgement when framing an SBD effort. The
case in question is a notional ground vehicle, based on a model created for a scalable-aggregation MATE study [10].
The vehicle alternatives are defined by 9 design variables, shown in Table 1 with their valid ranges.

A dataset of 6480 alternatives was sampled and evaluated; for each combination of the full-factorial sample of
discrete design variables, 30 random samples of the continuous variables (wheel base, engine power, and fuel tank
size) were taken. This is a reasonable analogue to how SBD sets are often sampled, with some combination of “forced”
variation to populate multiple sets, but also with random sampling to fill out the space. However, we will not be
defining the sets a priori, and instead apply a clustering technique to automatically identify the most impactful
decisions: those that most strongly differentiate the sets in terms of the benefit and cost that they provide. The
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evaluative model calculates the unit acquisition cost for a vehicle as well as a set of performance attributes (including
weight, range, acceleration, weapon resistance, and others) that are used to calculate benefit via a multi-attribute utility
(MAU) function. For the purposes of this clustering task, the details of these models are irrelevant and are thus
omitted; however, it is important to note that the following analysis could be performed on any metrics of interest and
is not specific to this dataset nor the use of a utility model.

Table 1. Ground vehicle design variables and sampling ranges

Design Variable Valid enumerated range
Wheel base 8— 14 ft

Engine power 200 — 500 hp

Number of powered axles {1,2}

Fuel tank size 4-10ft

Tire type Street, weather, bulletproof
Suspension type Spring, air

Body type Open, closed, armored
Underbody Flat, V-shape

Fire suppression None, water, foam

To quantify the value impact of choosing between sets, we will consider convex hulls of subsets of the sampled
alternatives. This is similar to the “bubble” tradespace in that each hull encloses the set, and can provide a low-clutter
substitute visualization for the typically crowded scatterplot while still allowing the analyst to identify the benefit/cost
tradeoff patterns that result from varying design variable choices (a task traditionally performed by coloring each point
in the scatterplot according to the corresponding design variable level). Fig 4 shows an example of convex hulls
calculated and drawn around the three levels of the fire suppression design variable, fully encircling the black (0 = no
suppression), brown (1 = water-based), and tan (2 = foam-based) sets.
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Fig 4. Ground vehicle tradespace colored by Fire Suppression system, with convex hulls defining three sets

A group of hulls defined this way is a potential definition of sets. To assess them, we will define their differentiation
of the space as a function of how they overlap, containing members of other sets within their bounds:
avgMembership — 1

# hulls — 1

In this equation, avgMembership is the average number of convex hulls a randomly selected alternative in the
tradespace is contained by. The resulting function ranges from 0 to 1 and can be represented as a percentage of full
differentiation. Differentiation is 0 when avgMembership is equal to the number of hulls: implying that each point is
contained in every hull and thus they perfectly overlap. Differentiation is 1 (or 100%) when avgMembership is 1:
implying that the hulls are completely disjoint and have no overlap. Proposed set definitions with high differentiation
outline highly important decisions, because they necessarily must drive significant trades in the value space. Note
that this measure of overlap is based on the alternatives themselves, which is mathematically rigorous even when one

dif ferentiation = 1 —
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or more dimensions is a non-ratio number type (including MAU in this example), in contrast to methods that rely in
part on the area of overlap or distance between points (e.g. force-directed graphs).

Al can utilize this metric to quantify the salience of different clusters, scanning the space of potential clusterings
in order to identify the highest-differentiation combinations, gaining insight into what drives value for the system and
potentially leveraging that insight into the definition of sets for SBD. For this example, we will solve the problem
using a brute force algorithm, testing various binnings for each design variable in search of the most-differentiating
combination. The discrete variables for this case are all ordinal (having an implied greater/less than relationship), so
they are tested with bin edges at each possible level. For example, a three-level variable such as body type would test
the three-set clustering of {open, closed, armored} and also the two-set clusterings of {open or closed, armored} and
{open, closed or armored}. The continuous variables were tested with all possible clusterings of up to four sets, with
bin edges allowed at the 10% quantiles of the dataset (10%, 20%, 30%, etc.). Future applications of this technique
could use advanced Al algorithms to more intelligently search for the binnings that maximize differentiation without
wasting computational effort on likely-poor clusterings, and increase the fineness with which continuous variables
may be partitioned. Additionally, the technique is further generalizable to combinations of design variables, as long
as each alternative can be assigned to a single cluster (e.g. vehicles with small engines vs. vehicles with large engines
and large cargo vs. vehicles with large engines and small cargo): this quickly leads to a combinatory “explosion” of
the search space and is thus infeasible for brute force, but is achievable for more sophisticated search methods.

Table 2 shows the results of this Al search, displaying the set clustering with highest possible differentiation for
each design variable, sorted by differentiation. For this tradespace, it appears that body type — the shape and armor
applied to the vehicle — is the primary driver of value. Interestingly, the most impactful decision here is not between
all three body types (the three-set solution), but rather the decision solely between the armored variant and the two
not-armored variants (a two-set solution). An analyst interested in comparing these possible set definitions can bring
up the results for the suboptimal clustering as well, as shown in Fig 5 (this time rendered without the individual
scatterplot points to reduce clutter): the three-set solution, when plotted, shows a relatively large overlap between the
open (0) and closed (1) sets that reduces the differentiation of the clustering from 85% to 65%.

Table 2. Optimal clustering and differentiation scores for each design variable (base context)

Design Variable Best Clustering # Sets  Differentiation (%) Rank
Body type Open/Closed, Armored 2 84.7 1
Wheel base 8—-8.9 1t 8914 ft 2 34.4 2
Underbody Flat, V-shape 2 253 3
Fire suppression None/Water, Foam 2 11.2 4
Engine power 200 —471 hp, 471 — 500 hp 2 9.8 5
Fuel tank size 4-4713,47-101 2 6.9 6
Suspension type Air, Spring 2 2.6 7
Number of powered axles 1,2 2 1.7 8
Tire type Street, Weather, Bulletproof 3 1.5 9
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Fig 5. Optimal body type clustering (left) vs sub-optimal clustering (right) with levels 0 and 1 separated

It is important to remember that the power of this technique comes from the automation of allowing Al to
recommend the optimal clustering configurations. Rather than requiring an analyst to test various partitions or rely
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solely on prior knowledge or expertise, the computer is able to automatically find the best set configuration for each
variable and can immediately direct analyst attention to the most impactful decisions available to the design team: in
this case the decision to add armor would drive a substantial increase in cost, with possible utility gains once outside
the cost range of the non-armored designs. The clustering can be used to objectively define the design set drivers for
an SBD process for maximal tradespace coverage and minimal overlap and rework of the different teams, each of
which would take charge of a single set.

Other insights that can be gleaned from the data returned by the clustering analysis in Table 2 include things such
as the relative value-driving impact of different design variables, ranging from very important (body type) to
somewhat important (wheel base, underbody, fire suppression), to not important. We can also infer the areas of strong
vs. weak impact of continuous variables: e.g. trading wheel base length drives more differences in value when wheel
base is small than large, hence the clustering that isolates the smallest alternatives (8 to 8.9 feet) from the remainder
of the tradespace

This analysis can also be used to explore decision sensitivity to uncertainty by considering changes in
differentiation caused by changes to the parameterization of the evaluative model, such as would be done for a MATE
study using Epoch-Era Analysis [11] to capture potential variability in the operational context of the system. This
clustering analysis was repeated on the same set of alternatives but evaluated in a different epoch corresponding to
bad weather, represented by changes in the underlying model parameters and therefore the shape and structure of the
tradespace. These results are shown in Table 3, preserving the order of design variables from the first analysis and
graying out clusters that are the same (or effectively the same). Prominent differences between contexts are shown in
Fig 6:

e The new context is more challenging than the original context, resulting in fewer than 10% of the valid
alternatives in the tradespace and therefore generally higher differentiation scores (less density = less overlap
between sets).

e Body type increases to 100% differentiation, showing no overlap in this context.

e Tire type increases substantially in importance: despite being the least differentiating design variable in the
base context we can see that it is now the fourth highest (46%). While the three types are essentially
equivalent on dry roads, all-weather tires provide substantial additional utility in bad weather.

Table 3. Optimal clustering and differentiation scores for each design variable (bad weather context)

Design Variable Best Clustering # Sets _ Differentiation (%) Rank
Body type 100 T1
Wheel base 39.9 5
Underbody 53.5 3

Fire suppression 34.8 7
Engine power 200 — 218 hp, 218 — 500 hp 2 36.3 6
Fuel tank size 4-7,7-76,76-8,8—10f 4 29.5 8
Suspension type 8.2 9
Number of powered axles 2 1 Undefined T1
Tire type 46.0 4

Another striking insight is that the number of powered axles has undefined differentiation, because 2-axle designs
are the ONLY valid solution for this context (and thus only 1 set defined by this variable can exist). This type of edge
case is still easily identifiable as a high-importance decision, which is interesting since, like tire type, this design
variable was extremely unimportant in the original context. Other differences between contexts include engine power,
a continuous variable, changing from being most differentiating at zigh power (set border at 471 hp) to most
differentiating at low power (218 hp), implying that bad weather increases the downside risk of low-power vehicles.
Fuel tank size is also now maximally differentiated with four sets instead of two, however it remains of relatively low
importance.
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Fig 6. Comparison of scatterplot (L), body type sets (M), and tire type sets (R) for the two contexts

7. Conclusion

The use of Al to perform automated analysis of the large datasets generated during the application of early phase
design techniques such as MATE and SBD has the potential to significantly change the way that engineers and analysts
design systems. While brute force methods are able to solve the relatively simple problems shown in this paper —
such as the partitioning of design variables into sets, and the ranking of their value-driving impact — their more
important role is that of a proof-of-concept for the application of advanced Al methods such as deep learning, which
can operate on the same types of unsupervised learning problems (or more specifically, clustering or pattern-finding).
Al offers an opportunity to dramatically expand the scope and speed with which we can extract insights from complex
problems: clustering multiple variables at once, intelligently searching to avoid time wasted on predictably
overlapping clusters, and perhaps even combining the insights of multiple metrics (e.g. differentiation, number of
valid designs in each cluster to avoid degenerate solutions) or across multiple operational contexts into a more holistic
ranking of tradeoff importance. These objective insights offer a valuable perspective on the design problem that can
supplement the knowledge and expertise of SMEs — whether providing additional support for their initial expectations
or highlighting counterintuitive and unanticipated tradeoffs that impact system value. Future research will seek to
expand on these concepts and incorporate new Al research with larger datasets, tackling “big data” problems for which
manual analysis and exploration is insufficient for the identification of these patterns.
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